目录	
----	--

涡激运动 VIM 虚拟试验1
一、试验介绍
1. 功能介绍
2. 产品特色1
3. 运行环境和效率
4. 试验精度
二、典型样例
1. 样例名称
2. 样例描述
3. 试验结果
4. 重要模型和参数
5. 部分试验结果展示
三、操作指南10
1. 试验创建1
2. 参数录入12
3. 求解设置14
4. 结果展示15
四、参考资料17

涡激运动 VIM 虚拟试验 VIM Virtual Test

功能:本产品开发了用于处理高雷诺数下大分离流动的湍流模拟模块——基于剪 切应力输运(Shear Stress Transport, SST)的分离涡模拟(Detached-Eddy Simulation, DES)。结合动边界弹簧网格模块和六自由度运动模块,可求解平台涡激运动。 特色: SST-DES 是一种混合雷诺平均/大涡模拟(Hybrid RANS-LES Method), 它在壁面附近求解雷诺平均方程,在远离壁面的流动分离区域采用大涡模拟方 法,兼具前者计算量小的优点和后者能模拟大分离湍流流动、计算精度高的优势。

一、试验介绍

1. 功能介绍

本产品开发了用于处理高雷诺数下大分离流动的湍流模拟模块——基于剪 切应力输运(Shear Stress Transport, SST)的分离涡模拟(Detached-Eddy Simulation, DES)。结合动边界弹簧网格模块和六自由度运动模块。

主要功能有:可求解平台六自由度涡激运动结果。

2. 产品特色

(1) 可计算高雷诺数分离流动:

SST-DES 是一种混合雷诺平均/大涡模拟(Hybrid RANS-LES Method),它在 壁面附近求解雷诺平均方程,在远离壁面的流动分离区域采用大涡模拟方法,兼 具前者计算量小的优点和后者能模拟大分离湍流流动、计算精度高的优势。

(2) 试验结果分析

可提供平台涡激运动横荡、纵荡和首摇运动结果;

试验结果动态展示;

试验报告自动生成;

3. 运行环境和效率

主流 PC 机上即可运行; Windows 操作系统,高性能计算集群上也可运行。 Windows 操作系统,采用虚拟化技术,动态分配资源,满足计算所需。

计算速度快, PC 机上计算单个频率点耗时约 15 分钟, 大大高于同样精度的粘流模型。

4. 试验精度

平台横向响应的数值结果与模型试验结果的误差在 5%以内, 首摇响应的误

差则在10%以内,均满足计算极度的要求。

二、典型样例

样例一 半潜式平台涡激运动

1. 样例名称

样例试验-涡激运动-半潜式平台

2. 样例描述

半潜式平台试验。

3. 试验结果

- ① 平台横荡响应曲线;
- ② 平台纵荡响应曲线;
- ③ 平台首摇响应曲线;
- ④ 速度流场云图;
- ⑤ 压力流场云图;
- ⑥ 涡量流场云图;
- ⑦ 三维涡量云图。
- 4. 重要模型和参数

缩尺比/λ	1:1	1:70					
立柱有效直径 D	14m	0.2m					
吃水/T	35 m	0.5 m					
宽度/(D+S)	70 m	1 m					
立柱中心间距/S	56 m	0.8 m					
立柱截面尺寸/(D×D)	14 m×14 m	0.2 m×0.2 m					
立柱高度儿	24.5 m	0.35 m					
浮筒宽度/B	14 m	0.2 m					

表1 平台模型参数

浮筒高度/Hpon	10.5 m	0.15 m
排水量/Δ	53 000 t	0.158 t

表 2 基本数据表

流体密度(kg/m	流体动力粘度系	流体速度 X	流体速度 Y	流体速度 Z
3)	数	(kg/m^2)	(kg/m^2)	(kg/m^2)
1000	1.0E-6	0.0905	0.0	0.0

表3 浮式平台的物理参数表

平台质量(kg)	125.15				
重心坐标 X(m)	0.0	转动惯量 X(kg·m2)	0.0		
重心坐标 Y(m)	0.0	转动惯量 Y(kg·m2)	0.0		
重心坐标 Z(m)	-0.33	转动惯量 Z(kg·m2)	28.849		

表 4 系泊系统设置参数表

导缆孔坐标	导缆孔坐标	导缆孔坐标	锚泊点坐标	锚泊点坐标	锚泊点坐标	弹性系数	预张力
X (m)	Y (m)	Z (m)	X (m)	Y (m)	Z (m)	(N/m)	(N)
-0.706	0.0	0.0	-4.5	0.0	0.0	18.086	22.716
0.706	0.0	0.0	4.5	0.0	0.0	18.086	22.716
0.0	-0.706	0.0	0.0	-4.5	0.0	18.086	22.716
0.0	0.706	0.0	0.0	4.5	0.0	18.086	22.716

表 5 求解参数设置表

并行核数	起始时间	结束时间	时间步长	保存时间
	(s)	(s)	(s)	步间隔
32	0.0	300.0	0.02	0.5

网格是利用 OpenFOAM 自带网格划分工具 blockMesh 和 snappyHexMesh 生成。所设计算域的大小为: -10D≤x≤20D, -10D≤y≤10D, -9D≤z≤0。计算 域如图 3 所示。之后在景网格中利用 snappyHexMesh 捕捉模型表面并进行局部 网格的加密以及边界层的添加。边界层网格数量为 8 层。四种倒角半径模型网 格数量如表所示,均在 270 万左右。

图1 网格划分示意图

5. 部分试验结果展示

1) 横向运动时历曲线

图 2 是平台总体横向运动的时历图,以平台中心作为统计依据,纵轴的运动 位移采用无量纲化处理,其中 A 为平台横向振荡幅值,D 为立柱垂直来流方向的 特质长度直径。从图中结果可以获取平台涡激运动的最大横向位移和标称横向位 移,这两个参数也是半潜式平台涡激运动中最关注的两个参数。

图2横向运动时历图

2) 纵向运动时历曲线

图 3 是平台总体流向运动的时历图,同样以平台中心作为统计一句,纵轴也采 用了无量纲化处理,但 A 对应的是流向振荡幅值。从图中结果可以看出,平台 的位移在来流冲击后会便宜原来平衡位置,并在新的平衡位置做来流振荡运动。

图 3. 纵向运动时历图

3) 首摇运动时历曲线

图 4 是平台首摇运动的时历图,纵轴记录了平台首摇角度。从图中结果可 以获取平台最大首摇幅值。

图 4 首摇运动时历图

4) 平面运动轨迹曲线

图 5 记录了平台在水平面上的运动轨迹,横轴表示 X 向,纵轴表示 Y 向。

图 5 平台运动轨迹图

5) 横向受力时历曲线

图 6 记录了平台拖曳力系数的时历运动图,纵轴采用了无量纲化处理:

$$C_L = \frac{F_L}{0.5\rho U^2 DA_w}$$
 公式 (3-1)

其中 FL 为平台升力, rou 表示流体密度, U 表示来流速度, Aw 表示平台垂 直来流方向的湿表面积。横向受力的时历数据可以统计平台受力均方根结果。

图6横向受力时历图

6) 纵向受力时历曲线

图 7 表示纵向受力时历图,纵轴同样采用无量纲化处理:

$$C_D = \frac{F_D}{0.5\rho U^2 A_w}$$
(公式 3-2)

其中,FD为平台拖曳力。纵向受力时历数据可以统计平台拖曳力的平均结果。

图 7 纵向受力时历图

图 8、9 和 10 分别街区 Z/H=-0.5 的水平面,其中 Z 表示举例 Z 轴的高度, H 表示立柱高度。速度云图中选取了 U 的 x 分量进行表示,涡量图则采用了 ω 的 z 分量进行展示。

图 3.8 半吃水面速度云图

图 3.9 半吃水面压力云图

图 3.10 半吃水面涡量云图

三维涡量图展现了立柱泻涡模式的发展,其中三维涡量的计算采用了 Q 准则,云图中显示的是计算得到的 Q 结果。

图 3.11 三维涡量云图

三、操作指南

用户登录中国数值水池虚拟试验系统后,可完成系统提供的各类虚拟试验。虽然试验在参数、求解器、计算结果等方面区别很大,但总体上来说操作过程基本相同,主要由四个部分组成:1试验创建;2参数录入(前处理);3计算求解;4结果展示(后处理)。

登录系统后,点击页面左侧导航栏中的"涡激运动",从而进入该试验的管理页面。如 下图所示,该页面有关于涡激运动试验的主要功能介绍,以及该虚拟试验的相关特色,其下 为"我的试验"。

中国数值 China Numer	直水池 rical Tank	虛	拟试验	系统V1.0					🛔 jangqs
₩ 概覧 48 数据回归法	^	- 幽計 - <u>和時</u> 功	湖武治 » 快速性回归于 能:基于三:	共可靠工具.					
▲ 船舶快速性		特	色:操作输出	便,只需用户输入船、机、桨等主要的	多数即可; 快速响应, 点击计算	后在很短的时间内给予用户反馈;计算精度高,经常	N试,船舶航速预报精度为0.3knl以内;结果形式丰富,计算	完成后可以提供表格、曲线以及指	g告等多种形式来展示计算结果。
創始。		r	新建 ★ 要	10					样例试验
▲ 螺旋桨空泡			SELE	试验名称 试验编号		创建时间	修改时间	创建省	10社名称 Mathematical Annual A
▲ 立管VIV		•	/ 99	11	11	2018-10-24 16:23:6	2018-10-24 16:39:22	jangıqs	项目描述
@ 势流CFD法		•	/ hz		bc	2018-10-24 15:55:24	2018-10-24 16:41:52	jangqs	散货船快速性预报标准输入参考
金 船舶运动		•	 HEBI 	样例_1	##@J_1	2017-10-12 9:53:38	2018-10-24 13:12:38	jangqs	admin
 ▲ 法規規則 単合正动 単合正动 創業現代 考測定5 ● 粘筋(FD)法 ● 粘筋(FD)法 ● 粘筋(FD)法 ● 乳的账户 国 个人信息 									

"我的试验"中给出用户做过的试验列表,该列表以时间顺序排序,可以在看到用户做的每一个虚拟试验的概要信息,如试验名称、编号、描述、创建时间、修改时间等内容,用 户可在这里对试验进行创建核删除操作。

页面的右侧是涡激运动试验的"样例试验",如下图所示。样例试验是系统提供的已经 完成的典型试验,对系统中的所有注册用户开放,可给用户提供一定的参考,从而更好地完 成自己的虚拟试验。

OF 中国数值水流 China Numerical Tar	上虚拟试验系统V1.0			🛔 jangqs
# #X	虚拟试验 » 船舶快速性回归预报虚拟	试验 > 散货船快速性预报样例		
	48入 48出			@ 修改
as somer.uz	40.8149.90			试验名称
盖 船舶快速性	(2) 45-20			散货船快速性预报样例
船舶操纵性	8380/H/71(_)			试验编号
会 螺旋桨空泡	motiveD			T17112801
	8080 (C R)(_)			項日描述
▲ 立官VIV	Shin1			散货船快速性预报标准输入参考
	8380 CH (m)		8080.FU88(m)	创建即时间
e apacizzh	220	202	49	2017-11-28 10:24:4
an attained 40	R0R0F(ck/m)	8080397v (#10/m3)	80年ロッド刊: 第1巻か()	修改时间
皇 波浪增阻	16.7	204783	0.854109	2018-10-23 23:43:32
主 平台运动	858015L/10789()	(m)	Example 2/m)	2 以此创建试验
● 約約週間以件	2 561	5.65	10	24.00 42.00
				▶ 启动计算
▲ 荷浪信切	王明朝政			计算状态
·····································	10 79 EX	Let BL HAR	ereb (dir) (- ())	已完成
▲ 船舶上浪	20100	王41年人144年	A-422(1/11)11)	计算用时
A	25400	/0		共等待 0 秒, 共执行 1 秒
	相关系数			T XML
▲ 我的账户 ^	2 修改			
四 个人信息	功率儲备系数(-)	转速储备系数	(-)	
	0.1	0.035744	2	
	· 柏东效率(-)	风浪储备系数	(-)	
	0.99	0.15		
ID 完成	autorit Ding State Develop 1			(1) (中 (10) (中 10)

点击"样例试验"后,则进入样例试验的详情界面,可以看到样例试验的参数设置、求 解器的执行信息及试验的结果。这里,用户可以查看样例的所有信息,但不可以修改。

1. 试验创建

系统提供了两种创建虚拟试验的方法,第一种是通过某个虚拟试验为范本来创建虚拟试验。如下图所示,点开某个虚拟试验的详情页面,在这个页面的右侧用红色字体标出的字样 "以此创建试验",则弹出创建新试验的对话框,输入适当的试验名称、编号及描述,点击确定即可完成新试验的创建。

G	中国数值水池	虚拟试验系统V1.0	0	Wang_Qiuwen
â	约束模与自航模 ^	虚拟试验 » 涡激运动 »	样别试验-调源运动-半潜式平台	
<u></u>	快速自航模		· · · · · · · · · · · · · · · · · · ·	
£	船舶操纵性预报	 ● HIXLIE ● 基本参数 	试验名称	
â	大尺度海洋环境	 ○ 网格划分 ○ 深式平台 	样例试验-离激运动-半潜式平台	
	中尺度海洋环境	O 平台参数	(法) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
٤	中小尺度海洋环	○ 系泊系统参数 △ ● 求解	項目描述	
境		⊙ 求解设置	半瀨式平台试验	
۰	静水自由衰减	 ● 计算求解 ∧ ● 后处理 	69]建舟灯间	
	平台风流作用力	 曲线图 本時間 	2019-03-20 #20pt/iii	
٤	作业海况平台运	◎ 报告生成	2019-03-21	
动	虚拟试验			
	极限海况平台运			
动	虚拟试验			
	涡激振动			
	涡激振动(精细)			
ŝ	涡激运动			
▲ 我	的账户			
A 10	个人信息			

以此创建新试验		x	
试验名称			*
[拷贝]散货船快速性预报样例			
试验编号			
[新编号]			
项目描述			
			÷
4		÷	
	确定	关闭	

如下图所示,新试验创建后桨自动跳转到该试验的详情页面,可见通过这种方式创建的 新试验是样例试验的一个拷贝,其参数与样例试验相同,用户只需按实际情况修改部分参数 即可。因此,可将当前虚拟试验看成试验模板,起到初始化设定新试验参数的作用,系统推 荐通过这样的方式来创建新的虚拟试验。

第二种创建新试验的方法是创建一个空白试验。如下图所示,通过点击"船舶快速性预 报"中虚拟试验列表上方的"新建"按钮,同样会弹出对话框如下图。填入相应的信息,然 后点击确定,即可创建一个新的空白试验。

-989	新建船舶快速性预报	X	(1
	试验名称			
	填入虚拟试验名称			
	项目描述			
	填入儘狀试验的相关描述			
	试验编号			
	虚拟或验编号		*	
4	i de la construcción de la constru	÷		
	稀定	关闭		

如下图所示,新空白试验创建后,同样会自动跳转到该虚拟试验的详情页面。可见通过 该方法创建的所有虚拟试验都是空白,需要用户手动输入所有的必填参数,方可进行计算, 该方法适用于有一定经验的用户。

Or 中国数值水池 China Numerical Tank	虚拟试验系统V1.0			🛔 jangqs 🔶
★ 概览	虚拟试验 » 船舶快速性回归预报虚拟试验 » 填入虚拟试验名称			
68 数据回归法 个	編入 編出			G 修改
● 約300位)使性	相型会数			试验名称 55
▲ 加加达还任	GP 修改			填入虚拟试验名称
皇 船舶操纵性	船舶类型(-)			试验编号
金 螺旋桨空泡	[未选择]			虚拟试验调号
▲ 立管VIV	船舶名称(-)			
の 指法CFD法 へ				618PR16
	船舶总长(m) 輸入備本手0	● 無线间长(m) 輸入値大干0	船舶型湾(m) 輸入領本于0	2018-10-24 20:44:18
兰 船舶运动				修改时间
金、波浪増阻	船舶吃水(m) 输入量大于0	船舶排水体积(m3) 输入值大于0	船舶方形	
全 平台运动	2/04/01/21/24/0027 11	3074096530741387(cm)	(開発(2年(3.(m))	计算状态
▲ 船舶操纵性	周囲(子)(10円(1) 英数	第4月12回3000(11) 輸入值大于0	時間的 <u>加生</u> 生(11) 輸入值大于0	▶ 启动计算
	+10.689			计算状态
- P9 RXINUM	2 作改			未启动
私源CFD法 ^	主机最大持续功率(kW)		主机最大持续转速(r/min)	计算用时
▲ 船舶上浪	输入值大于0		输入值大于0	
皇 平台运动	相关系数			
▲ 我的账户 ^	诺 修改			
	功率储备系数(-)		转速储留系数(-)	1
	()()()()()()()()()()()()()()()()()()()			
	轴系效率(-)		风浪储备系数(-)	
	D-EX		94K	
	摩擦补贴系数获取方式(-)			
	[未选择]			-
1▷ 完成				다 🕀 🕀 0 🕀 100%

2. 参数录入

当一个新的虚拟试验创建口,用户需要对其参数进行适当的录入或修改,为确保结果的 准确,请确认所录入的参数符合实际情况。下面以"涡激运动"为例,介绍一下各种类型参 数的录入方式。

2.1 基本参数

在"输入"标签中,点击"基本参数"小标签下方的"修改"按钮,可进入如下图 所示页面,可以进行与流体相关参数的设置。

Ochina Numerical Tank	虚拟试验系统V1.	0			Wang_Qiuwen
▲ 概览	虚拟试验 》 涡激运动 》	样例试验-涡激运动-半潜式平台 甘本会称			
● 模型库 の 虚拟试验库 ^	 ● 就短編性 ◇ ● 前处理 ○ 基本参数 	基本令领 记 修改 法体密度(lg/m ³)			
魚 船舶波浪增阻	 ◎ 网格划分 ▲ ○ 浮式平台 ○ 平台参数 	1000 流体动力粘性系数(㎡/s)			
▲ 船模自航▲ 船模阻力	 ○ 系泊系統参数 ▲ 求解 ④ 求解设置 	0.000001 流体速度			
 二、螺旋桨敞水 二、船舶快速性预报 	 ● 计算求解 ヘ ● 后处理 ● 曲线图 	☞修改 流体速度X(m/s)	流体速度Y(m/s)	流体速度Z(m/s)	
全。激振力预报 全、而元法空泡激振	 ◎ 流场图 圖 报告生成 	0.0903	0.0	0.0	
л л					
▲ 粘滞空泡激振力▲ 横摇阻尼					
盒 船舶运动盒 船舶甲板上浪					
 盒 约束模与自航模 盒 快速自航模 					

2.2 网格划分

点击"网格划分"小标签下方的"上传文件"按钮,可进入如下图所示页面,上传文件

后点击生成网格即可自动生成网格。

中国数值水池 China Numerical Tar	也虚拟试验系统V1.0	0 A V	/ang_Qiuwen
a 1970.5	《 虚拟试验》 涡激运动 》	祥朔试验。鴻邈运动,半潮式平台	
1 1M.00	骨 试验属性	网格划分	
盒 模型库	∧ ● 前处理		
693 虚拟试验库 ^	 ● 基本参数 ● 网格划分 	r0.stl	
â. 船舶波浪增阻	∧ ④ 浮式平台	生成网络	
金 船模白航	○ 下口多数 ○ 系泊系统参数		
	∧ ⑧ 求解		
船模阻力	⊙ 求解设置		
皇 螺旋桨敞水	◎ 计算求解		
	~ ⑧ 后处理		
	 画或図 ○ 流场图 	不支持的操作	
急 激振力预报	圖 报告生成		
â. 面元法空泡激振			
ħ			
盒 粘流空泡激振力			
▲ 横摇阻尼			
金 船舶运动			
金 船舶甲板上浪			
盒 约束模与自航模			
金 快速自航模	~		

2.3 浮式平台

点击"浮式平台"小标签下方的"修改"按钮,可进入如下图所示页面,可以对相关系 数等参数进行设置。

G) 中国数值水池 China Numerical Tan	也。虚拟试验系统V1.	0	& Wang_Qiuwen					
49 19 19 1	概览 模型库 虚拟试验库 ^ 副 船舶波浪增阻	▲ 成則試验 > 湖波运动 > ・ 試验属性 へ ● 前处理 ○ 基本参数 ○ 网格助分 へ ○ 浮式平台 ○ 平台を数 ○ 日本参数	 移動(動)-掲載式平台 平台参数 『愛修改 平台の最(kg) 125.15 平台の社特征直径(m) 						
		 ● 求解 ● 求解设置 ● 计算求解 ヘ ● 后处理 ● 曲线图 ● 流扬图 	● 求解 0.2558 ● 求解公型 平台吃水 (m) ● 方松3型 -0.2 ● 后公理 -0.2 ● 点松器 運分生粉 ● 点松器 運分生粉 ● 点松器 運行物改						
	▲ 加加水力 小 N N N N N N N N N N N N N N N N N N	₩ 接着生成	 ●○坐标以(m) ●の ●の ■○坐标以(m) ●の ■○坐标Z(m) ●0.33 	 63.5% 6.0 6.0 6.0 6.0 6.0 6.0 7.0 7.0					
	 ● 船舶运动 ● 船舶甲板上浪 ● 约束模与自航模 ● 快速自航模 								

2.4 系泊系统参数

点击"系泊系统参数"小标签下方的"修改"按钮,可进入如下图所示页面,可以对系 泊系统参数进行设置。注意这里的系泊系统采用线性弹簧等效刚度进行替代。

C	中国数值水池 China Numerical Tanl	也虚拟试验系统V1.	0								۵.	Wang_Qiuwen		
*	概览	へ 虚拟试验 » 涡激运动 »	样例	试验-	涡激运动-半潜式平台									
	+HTDI de	● 地质描述 然泪条纸参数 ● 中的理 利用系统参数												
-	候坐件	 ◇ 明2/理 ○ 基本参数 	JR.I	1.5%2013 辛斤3章	834									
6 20	虚拟试验库 ^	⊙ 网格划分		编辑	导缆孔坐标X(m)	导缆孔坐标Y(m)	导缆孔坐标Z(m)	锚泊点坐标X(m)	锚泊点坐标Y(m)	锚泊点坐标Z(m)	弹性系数(N/m)	预张力(N)		
	給舶波浪増阻	∧ ⑨ 浮式平台 ○ 平台参数			-0.706	0.0	0.0	-4.5	0.0	0.0	18.086	22.716		
	金 船模自航	O 系泊系统参数			0.706	0.0	0.0	4.5	0.0	0.0	18.086	22.716		
	▲ 船模阻力	 ◆ 求解 ● 求解设置 			0.0	-0.706	0.0	0.0	-4.5	0.0	18.086	22.716		
	皇 螺旋桨敞水	 计算求解 * ● 后处理 			0.0	0.706	0.0	0.0	4.5	0.0	18.086	22.716		
	盒 船舶快速性预报	● 曲线图	示意	と問い										
	â. 激振力预报	 ○ 流场图 圖 报告生成 						•						
	金 面元法空泡激振													
	ъ							W						
	金 粘流空泡激振力						\square							
	盒 横摇阻尼						\square							
	金 . 船舶运动						\square		,					
	全 船舶甲板上浪						来流		/#_ F					
	金 约束模与自航模							×	• 锚泪点					
	▲ 快速自航模								。导缆孔			~		

3. 求解设置

全部参数正确设置后,可启动求解器进行计算。如下图所示红色方框内,求解器的启动 及计算状态展示在整个页面的右下方。

(会) China Nu	<mark>汝值水</mark> 池 umerical Tan	也。虚拟试验系统V1.	.0	& Wang_Qiuwen
★ 概览 ▲ 模型库 金 感状试验库 ▲ 船舶波流 ▲ 船桶市	~ 良増阻 亢		年齢試验-読厳运动-非満式平台 実能设置 「建築改 記念时间(s) 300.0	
 金螺旋桨间 金船舶快速 金 総振力所 	」 放水 重性预报 页报	 ② 未請设置 ③ 计算求解 ④ 后处理 ④ 曲线图 ④ 流畅图 励 报告生成 	时间歩长(s)(歩考値0.01) 0.02 保存时间步间隔(s) 0.5	
 面元法 力 4 5 4 4 4 4 4 4 5 4 4 4 5 4 4 5 4 4 5 4 4 4 5 4 4<th>2泡激振力 23歳振力 25 カ 反上浪 51 前横 た横</th><th></th><th></th><th></th>	2泡激振力 23歳振力 25 カ 反上浪 51 前横 た横			

如下图所示,点击"启动计算"按钮,会弹出启动确认对话框,点击确定按钮即可启动

计算。

如果用户录入的参数不符合计算条件时,计算将无法启动,并会弹出对话框进行提示,请用户按照提示的要求来填写相关的参数,以确保试验能够正确,顺利的进行。

4. 结果展示

当求解器执行结束后,可切换到"输出"标签对应的页面来看本次虚拟试验的结果,试验结果可分为曲线类和云图类。曲线类可选中不同自由度的响应幅值进行显示曲线,云图类需要根据入流条件进行相应的显示参数范围设置。最后点击报告生成可以自动生成结果文

档。

Ohina Numerical Tank	虚拟试验系统V1.	0						& Wang_Qiuwen
^ 	虚拟试验 » 涡激运动 »	样例试验-涡激运动-半潜式平台						
▲ 概览	₩ 试验属性	曲线图						
â.模型库	∧ ● 前处理	曲线类型						
88 虚拟试验库 ^	 量本参数 网格划分 	橫向 (y轴) 运动时历曲线 纵向 (x轴) 运动时历曲线	首摇运动时历曲线	影 平面运动轨迹曲线 相	橫向 (y铀) 运动时历曲线	纵向 (x铀) 运动时历曲线		
金 船舶波浪增阻	~ ⊙ 浮式平台	显示曲线						
▲ 船模白航	 O 平台参数 O 系泊系統参数 	All read SCED and And Scede						
	~ ● 求解							
	 求解设置 计算求解 							
皇 . 螺旋桨敞水	 ○ 日昇小県 ∧ ⑧ 后处理 							
船舶快速性预报	 ○ 曲线图 ○ 次延期 							
盒 激振力预报	● 元初函 圖 报告生成							
盒 面元法空泡激振								
D								
● \$\$凌空初激运力								
盒. 積強阻尼								
金 船舶运动								
盒 船舶甲板上浪								
盒 约束模与自航模								
▲ 快速自航模								
🚯 中国数值水池	虚拟试验系统V1.	0						& Wang_Qiuwen
China Numerical Tank		-						
	虚拟试验 » 涡激运动 »	样例试验-涡激运动-半潜式平台						
▲ 概览	备 试验尾性	流场图						
▲ 模型库	、 ⑧ 前处理	速度云图参数		压力云图参数		涡服	云图参数	
	◎ 基本参数	☑修改		■修改		C	修改	
48. 虚拟试验库 个	◎ 网格划分	速度云图色调上嗯(m/s)	F	玉力云图色调上限(Pa)		涡昰	云图色调 上現(1)	
魚 船舶波浪増阻	∧ ⊙ 浮式平台	0.0905	Tub	0.00614		1	76207	
	0 平台参数		_	0.00014				
▲ 船模自航	O 系泊系统参数	速度云图巴调下版(m/s)	11	也力云图巴调下限(Pa)		涡量	云图巴调下限(1)	
▲ 船模阻力	∧ ⑧ 不詳	-0.04525		-0.00604		-1	.76207	
	 水肿设直 (1) 计算术 	云图类型						
皇 螺旋桨敞水	◇ ◎ 后处理	北方水田市市市二周 北方水田市中二周 2	化防火亚面内没是二圈	一件切合二限				
金 船舶快速性预报	● 曲线图		FROTTEN的里台国	二年四里石四				
	○ 流场图							
盒 激振力预报	圖 报告生成	加山西市期山文國						
🚊 面元法空泡激振								
1) Internet								
<u>л</u>								
全 粘流空泡激振力								
皇 横摇阻尼								
全 船舶运动								
黨 船舶甲板上浪								
盒 约束模与自航模								
盒 快速自航模								
V								

四、参考资料

VIM 中的流动均发生在高雷诺数下,且伴随大分离湍流流动。准确预报高雷诺数下的 流动分离及分离后的流体运动是开发 VIM 虚拟试验的重点,为此我们开发了用于处理高雷 诺数下大分离流动的湍流模拟模块——基于剪切应力输运(Shear Stress Transport, SST)的 分离涡模拟(Detached-Eddy Simulation, DES)。SST-DES 是一种混合雷诺平均/大涡模拟 (Hybrid RANS-LES Method),它在壁面附近求解雷诺平均方程,在远离壁面的流动分离区 域采用大涡模拟方法,兼具前者计算量小的优点和后者能模拟大分离湍流流动、计算精度高 的优势。

不可压缩粘性流体的控制方程为质量和动量守恒方程:

$$\frac{\partial \overline{u}_i}{\partial x_i} = 0$$

$$\frac{\partial \overline{u}_i}{\partial t} + \frac{\partial \overline{u}_j \overline{u}_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \overline{P}}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\nu \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right) \right] - \frac{\partial \tau_{ij}}{\partial x_j}$$

其中,v为分子粘度, τ_{ij} 为雷诺应力或亚格子应力张量。根据 Boussinesq 假设, τ_{ij} 可以表示为

$$\tau_{ij} = \frac{2}{3} \delta_{ij} k - \nu_t \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right)$$

分离涡方法是 Spalart 等^[3]提出的一种混合雷诺平均(Reynolds-Averaged Navier-Stokes, RANS)和大涡模拟(Large-Eddy Simulation, LES)的方法。SST-DDES 方法在近壁面的流动区域采用 SST 模型,而在其他区域采用亚格子模型求解流场。分离涡模拟方法作为一种 混合 RANS 和 LES 的方法,其优势在于既可以保证求解的精度,又可以通过减少近壁面处 的边界层网格来降低计算量。

在 SST 模型中, 湍动能 k 和特定湍流耗散率ω的运输方程分别表示为:

$$\frac{\partial k}{\partial t} + \frac{\partial (u_j k)}{\partial x_j} = \tilde{G} - \beta^* k \omega + \frac{\partial}{\partial x_j} [(\nu + \alpha_k \nu_t) \frac{\partial k}{\partial x_j}]$$
$$\frac{\partial \omega}{\partial t} + \frac{\partial (u_j \omega)}{\partial x_j} = \gamma S^2 - \beta \omega^2 + \frac{\partial}{\partial x_j} [(\nu + \alpha_\omega \nu_t) \frac{\partial \omega}{\partial x_j}] + (1 - F_1) C D_{k\omega}$$

SST 模型中的湍流长度尺度定义为:

$$l_{k-\omega} = \sqrt{k} / (\beta^* \omega)$$

而 SST-DDES 模型中将湍流长度尺度修改为如下形式:

1

$$l_{DDES} = l_{k-\omega} - f_d \max\left(0, l_{k-\omega} - C_{DES}\Delta\right)$$

其中,

$$C_{DES} = (1 - F_1) C_{DES}^{k-\varepsilon} + F_1 C_{DES}^{k-\omega}$$
$$f_d = 1 - \tanh\left[\left(C_{d1} r_d \right)^{C_{d2}} \right]$$
$$r_d = \frac{V_t + V}{\sqrt{0.5 \cdot (S^2 + \Omega^2)} \kappa^2 d^2}$$

经过这样的修改,SST-DDES 模型通过 *l_{DDES}*控制 RANS 和 LES 方法的自动切换。在边界层内部靠近壁面的位置包括对数层,r_d函数取 1,f_d为 0,使得 *l_{DDES}=l_{k-0}*,保证了在此区域内湍流模型退化成雷诺平均模型,延迟了 DES 模型转换为 LES 模型,实现了延迟效果^[4]。

k方程中的耗散项可以改写为如下形式:

$$D_{DES}^k = \beta^* k \omega = k^{3/2} / l_{DDES}$$

因此可以得到新的 k 方程:

$$\frac{\partial k}{\partial t} + \frac{\partial (u_j k)}{\partial x_j} = \tilde{G} - \frac{k^{3/2}}{l_{DDES}} + \frac{\partial}{\partial x_j} \left[(v + \alpha_k v_t) \frac{\partial k}{\partial x_j} \right]$$

系泊系统是影响浮式平台 VIM 的重要因素,本求解器采用和水池物理模型试验相同的 一套水平弹簧系统去准确模拟平台系泊。建立准确的弹簧系统数学模型是 VIM 虚拟试验系 统能够成功预报锁定区间的关键。锁定区间是由于泻涡频率接近平台固有周期而引起的一种 共振现象。

在以往的对 VIM 的研究中,平台通常被视为一个弹簧质量系统。对于此类系统,其固 有频率可以表示为

$$f_n = \frac{1}{2\pi} \sqrt{\frac{k}{m+M}}$$

式中,**k**为弹簧系统提供的有效刚度,**m**为平台质量,**M**为平台在水中的附加质量。可 见弹簧刚度直接影响系统的固有频率,从而影响锁定区间对应的实际来流速度的范围。

同理,扭转固有频率可表示为

$$f_{nt} = \frac{1}{2\pi} \sqrt{\frac{k_t}{J + J_a}}$$

式中, k_t为弹簧系统提供的有效扭转刚度, **J**为平台转动惯量, **J**_a为平台在水中的附加转动惯量。在 VIM 虚拟试验进行之前需要先做静态位移测试和自由衰减测试, 以确保弹簧系统的配置能够提供所需的回复刚度和旋转回复刚度。

平台的涡激运动包含横荡、纵荡、垂荡、横摇、纵摇和首摇六个自由度的耦合,在海 洋工程中考虑最多的通常是水平面内的横荡、纵荡和首摇耦合运动。然而,由于涡激运动通 常发生在吃水较深的平台中,其运动周期更长且运动幅度更大,具有显著的三维特性。在数 值模拟中,如果仅考虑单自由度的运动,会对预报结果的精度造成一定影响。

该求解模块基于 Euler 角表述六自由度运动模型,如上图所示。在这个模型中,共使用

了两个坐标系:大地坐标系和随体坐标系。大地坐标系(Earth system),也称为惯性坐标 系,可以固定在地球参考系上,或者以恒定速度相对于大地向前移动。随体坐标系(Local system),也称为非惯性坐标系。该坐标系始终固定在物体上,其原点在旋转中心或者物体 重心上。当物体正浮时,随体坐标系的坐标轴方向与大地坐标系相同。随体在大地坐标系中 的位移,也就是随体坐标系相对大地坐标系的位置定义为: $\eta = (x_1, x_2, x_3, \varphi, \theta, \psi)$,分别代 表纵荡、横荡、垂荡、横摇、纵摇以及首摇运动。其中 (φ, θ, ψ) 为三个 Euler 角。随体坐 标系中的六个自由度的速度定义为 $v = (v_1, v_2) = (u, v, w, p, q, r)$ 。两个坐标系中的速度可以 通过基于 Euler 角的转换矩阵来转换。

图 2 随体和大地坐标参考系