1. 参考文献
[1]. Nakos D.E., Ship wave patterns and motions by a three dimensional Rankine panel method. PhD. Thesis, MIT, 1990.
[2]. Kring D.C., Time domain ship motions by a three dimensional Rankine panel method, PhD. Thesis, MIT, 1994.
[3]. Huang Y.F., Nonlinear ship motions by a Rankine panel method, PhD. Thesis, MIT, 1997.
[4]. Joncquez S.A.G., Bingham H., Andersen P., Validation of added resistance computations by a potential folw boundary element method. In: Proceedings of the 27th symposium on naval hydrodynamics. Korea, 2008.
[5]. Joncquez S.A.G., Bingham H., Andersen P., A comparison of methods for computing the added resistance of ships using a higher-order boundary element method. The 24 international workshop on water waves and floating bodies,
Russia, 2009.
[6]. Zhang X., Beck R.F., Three-dimensional large amplitude body motions in waves. Journal of Offshore Mechanics and Arctic Engineering, 130(4), 2008.
[7]. Zhang X., Bandyk P., Beck R.F., Seakeeping computations using double-body basis flows. Applied ocean research, 32(4), 471-482, 2010.
[8]. Song M.J., Kim K.H. and Kim Y.H., Numerical analysis and validation of weakly nonlinear ship motions and structural loads on a modern containership, Ocean Engineering, 38, 77-87, 2011.
[9]. Shao Y.L, Faltinsen O.M., Linear seakeeping and added resistance analysis by means of body-fixed coordinate system, J. Mar. Sci. Technol., 17(4), 493-510, 2012.
[10]. J.K. Chen, W.Y. Duan. Added resistance simulation for blunt ship in short wave. 30th International Workshop on Water Waves and Floating Bodies, Britol (UK), 2015.
[11]. Iwashita, H., Bertram, V., Numerical study on the influence of the steady flow in seakeeping. 12th Int. Workshop on Water Waves and Floating Bodies, France, 1997.
[12]. Iwashita, H., Ito, A., Seakeeping computations of a blunt ship capturing the influence of the steady flow. Ship Technol Res, 45, 4, 159-171, 1998.
[13]. Chen X.B., Diebold L., Doutreleau Y., New green function method to predict waveinduced ship motions and loads, Proc. of 23rd Symposium on Naval Hydrodynamics, Val DE Reuil, France, 18-33, 2000.
[14]. Duan, W.Y., Price, W.G., A numerical method to solve the mj-terms of a submerged body with forward speed. Int J Numer Methods Eng, 40, 655-667, 2002.
[15]. Teng, B., Bai, W., Dong, G., Simulation of second-order radiation of 3D bodies in time domain by a B-spline method. Proc Int Offshore Polar Eng Conf, 12, 487-493, 2002.
[16]. Zhao, R., Faltinsen, O.M., A discussion of the mj-terms in the wave-current-body interaction problem. 4th Int. Workshop on Water Waves and Floating Bodies. USA, 1989.
[17]. Liu Y.H., Kim M.H., Kim C.H., The computation of second-order mean and double-frequency wave loads on a compliant TLP by HOBEM. Int. J. Offshore Polar Eng. 5(2), 111-119, 1995.
[18]. Liu Y.H., Kim M.H., Kim C.H., The computation of second-order mean and double-frequency wave loads on a compliant TLP by HOBEM. Int. J. Offshore Polar Eng. 5(2), 111-119, 1995.
[19]. Engsig-Karup, A. P., Bingham, H. B., Boundary-fitted solutions for 3D nonlinear water wave-structure interaction, 24th Int. Workshop on Water Waves and Floating Bodies, Russia, 2009.
[20]. Wu G.X., A Numerical Scheme for calculating the mj Terms in Wave-Current-Body Interaction Problem. Apply Ocean Research, 13:317-319, 1991.
[21]. He G.H., Kashiwagi M., Time Domain Simulation of Steady Ship Wave Problem by a Higher-Order Boundary Element Method. Proceedings of 22th International Offshore and Polar Engineering Conference. Greese, 2012.
[22]. He G.H., Kashiwagi M., A time-domain higher-order boundary element method for 3D forward speed radiation and diffraction problems. Journal of marine science and technology, 19, 228-244, 2014.
[23]. W.Y. Duan, Y.S. Dai, Time-domain calculation of hydrodynamic forces on ships with large flare, International Shipbuilding Progress, 46(446), 223-232, 1999.
[24]. 王建方, 线性自由面条件的数值模拟, 哈尔滨工程大学硕士论文, 中国 哈尔滨, 2002.
[25]. K. Tang, R.C. Zhu, G.P. Miao, J. Fan, Domain decomposition and matching for time-domain analysis of motions of ships advancing in head sea, China Ocean Engineering, 28(4), 433-444, 2014.
[26]. Chen Jikang, Duan Wenyang. On the Development of a Numerical Tank for Potential Flow Ship Seakeeping Hydrodynamics,The Second Conference of Global Chinese Scholars on Hydrodynamics,Wuxi,China,2016.11.12-13。
[27]. Chen Jikang, Duan Wenyang, Zhao Binbin, Ma Qingwei. Time domain hybrid TEBEM for 3D hydrodynamics of ship with large flare at forward speed,The 32nd International Workshop on Water Waves and Floating Bodies, Dalian, China,23-26
April, 2017.
[28]. 郜振纲,陈纪康,段文洋,马山,脉冲响应函数和泰勒展开边界元法相结合的船舶运动计算分析,第十四届全国水动力学学术会议暨第二十八届全国水动力学研讨会文集,2017.8.8-2017.8.10
[29]. 朱城锜,陈纪康,段文洋,马山,基于泰勒展开边界元法的肥大型船舶运动及波浪增阻时域计算敏感参数分析,第十四届全国水动力学学术会议暨第二十八届全国水动力学研讨会文集,2017.8.8-2017.8.10
2. 研究团队
上海交通大学 朱仁传等
韩国国立首尔大学 Yonghwan Kim等
日本大坂大学 柏木正等
法国BV船级社 陈晓波等
3. 研究进展
船舶阻力研究对船舶线型优化起着关键作用。船舶阻力又分为船舶静水阻力及波浪增阻。随着船舶节能减排口号的提出,EEDI指数的设定,船舶波浪增阻已成为业界研究的热点。研究表明船舶波浪增阻主要包括船舶运动增阻及反射增阻两个部分。对不同船型,不同工况,两者贡献不一。波浪增阻数值预报方法主要有经验公式\切片法,三维势流方法及CFD方法。
目前切片法耦合经验公式进行船舶波浪增阻预报依然广泛使用。其最大的优点是计算高效,结果精度符合预期,但其缺点是简化过多,例如忽略水下三维形状的影响,基于Neuman-Kelvin假设忽略定常势对非定常势的影响,短波绕射增阻等。因此无法对船舶波浪增阻数值预报进行精细化模拟。而CFD方法则正好克服了上述方法的缺点,其能够真实模拟船舶周围流场(包括粘性、非线性效应等),无需引入各种假设。但与之对应的则是需要较丰富的建模经验,计算耗时,其效率还远达不到24小时内出结果的期望。三维势流方法则综合了上述两种方法的特点,即能够部分精细化模拟船舶周围流场的流动又能够保证较高的计算效率。因此基于三维势流方法开发一款高效、可靠的船舶波浪增阻预报软件拥有一定的现实需求和应用前景。
以Rankine源作基本解时域求解船舶耐波性和波浪增阻问题的数值方法得到了较大发展。MIT在90年代经过Nakos, Kring, Huang等多年努力开发了SWAN程序计算Wigley和S60船定常及非定常边值问题。Joncquez在2008和2009年利用高阶元方法计算Wigley船波浪增阻,并与远场公式的结果进行了比较,并给出了基于Newman-Kelvin假设和叠模流假设的结果对比分析。Zhang和Beck在2008年, Zhang等在2010年利用无奇点边界元方法求解Wigley和S60船定常和非定常兴波问题。Kim等2011年基于时域Rankine源方法开发了WISH程序,对Wigley,S175,S60,KVLCC2船波浪增阻进行数值计算研究,验证WISH程序的正确性。Shao和Faltinsen在2012年将有航速边值问题从随船平动坐标系转换至随体坐标系下求解,利用高阶元法对Wigley,S60和S175船进行波浪增阻预报,数值结果精度与试验值吻合较好。对于有航速问题时域采用Rankine源模拟容易出现稳定性问题,一般采用低通滤波的方法使得时域模拟过程稳定。常用的滤波器包括三点、五点和七点滤波。为避免流场动压瞬变,一般都对波面升高进行滤波处理。研究表明滤波对波浪增阻预报有一定的影响,尤其是短波波浪增阻预报。因此发展无需滤波处理的时域预报船舶波浪增阻的计算程序是有其实际需求的。段文洋提出了内外域匹配方法(2017)解决了外漂型船运用格林函数时域求解发散的问题,匹配方法利用时域格林函数外传效率高的特性,时域模拟稳定,无需进行滤波处理。因此将此方法推广至船舶波浪增阻预报中去有较强的实用价值。段文洋和陈纪康(2017)提出采用三维时域泰勒展开匹配边界元法发展了船舶三维有航速波浪增阻预报算法,通过与标模试验等试验数据和商业软件对比表明具有很好的计算精度、计算效率和稳定性。
实用工具(与本虚拟试验相关的国内外其他工具软件等);
WASIM,WISH,Shipflow,StarCCM+等